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Scalar Gravity and Higgs Mechanism
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The role that the auxiliary scalar field φ plays in Brans–Dicke cosmology is discussed.
If a constant vacuum energy is assumed to be the origin of dark energy, then the
corresponding density parameter would be a quantity varying with φ; and almost all of
the fundamental components of our universe can be unified into the dynamical equation
for φ. As a generalization of Brans–Dicke theory, we propose a new gravity theory with
a complex scalar field ϕ which is coupled to the cosmological curvature scalar. Through
such a coupling, the Higgs mechanism is naturally incorporated into the evolution of
the universe, and a running density of the field vacuum energy is obtained which may
release the particle standard model from the rigorous cosmological constant problem
in some sense. Our model predicts a running mass scale of the fundamental particles in
which the gauge symmetry breaks spontaneously. The running speed of the mass scale
in our case could survive all existing experiments.
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1. INTRODUCTION

Recent observational data, in particular the Hubble diagram of type I su-
pernova (Perlmutter et al., 1998) and the fit of cosmological parameters to the
Wilkinson Microwave Anisotropy Probe (WMAP) data (Bennett et al., 2005),
have given support to a novel scenario for our universe. The observable universe,
which may contain three density components, could in fact have serious depar-
tures from the previously assumed standard cosmological model. In this novel
scenario, a dark energy dominates the universe today and drives its acceleration.
This energy must be distributed smoothly on large scales, and be of negligible
effect during early epochs. However, the amount of dark energy may in fact be of
the same order of magnitude as the matter during a long period of cosmological
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history. In theory, this problem can be resolved by making modifications to the
right-hand side of Einstein’s field equation, but may require a fine tuning of the
different density components of the universe. For example, an additional scalar
field of matter may demand a tracking behavior in playing the role of dark energy
or dark matter. Therefore, in this paper, we will attempt to make modifications to
the left-hand side of Einstein’s equations by adding geometry terms.

A number of models for the dark energy have been suggested. The model
based on general relativity with a constant vacuum energy is by far the sim-
plest one. This is effectively the same as the cosmological constant in standard
general relativistic cosmology. However, the presently predicted values from the-
ory are much greater than those inferred from observations, it is so big that
we may have to appeal to the anthropic principle (Garriga and Vilenkin, 2000;
Weiberg, 1987). The quintessence model, which invokes a very light and slowly
evolving scalar field, requires its potential to be so flat that it is difficult to ex-
plain how the tiny mass of this field can stay safe from quantum corrections.
Other models include a network of topological defects, and calls for extra dimen-
sions. But all these have conceptual problems which need to be further clarified
(Gutperle et al., 2003; Kachru et al., 2005; Kallosh et al., 2000; Peebles and Ratra,
2005).

On the other hand, all searches for the signs of new physics beyond the particle
standard model have only confirmed the remarkable success of the standard model.
These confirmations have been attributed to the success of the Higgs mechanism,
but the corresponding Higgs particle has not been found. May be we should change
the concept. As we know, the Higgs mechanism requires that the Higgs scalar is
coupled to all fundamental particles and provides their mass. Therefore, it should
be a universal coupling, and possibly only gravitational interactions could do this.
The coupling between Higgs’ complex scalar and the electromagnetic gauge field
should be of particular note, and for this coupling is also required in the standard
process of Higgs mechanism. As far as it is known, there are only two kinds
of interactions act on the photon field: the electromagnetic interaction and the
gravitational interaction. Therefore, if it is assumed that Higgs’ complex scalar
is without charge of electricity, then the Higgs scalar can only be interpreted as
gravitational. The transfer of the gravitational interaction may be realized through
just such a coupling. Furthermore, the particle standard model is still not able to
give a full interpretation of the origin of the hierarchy between the weak scale and
the unification scale. It may also imply that this problem is connected with the
running of the energy scale of universe.

In this letter, we would like to discuss the peculiar property of scalar gravity.
First, we give a review of the cosmological property of the Brans–Dicke’s gravi-
tational scalar field theory in Section 2, then we give out our scalar gravity model
and discuss its Higgs mechanism in Section 3, and some conclusion remarks are
given in the last section.
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2. COSMOLOGICAL PROPERTY OF GRAVITATIONAL
SCALAR FIELD

Brans–Dicke theory is an alternative relativistic theory of gravity (Brans,
2005; Brans and Dicke, 1961). Compared with general relativity, as well as the
metric tensor of space-time which describes the geometry there is an auxiliary
scalar field φ which also describes the gravity. The testing of Brans–Dicke theory
using stellar distances, the CMB temperature and polarization anisotropy have
been discussed in (Chen and Kamionkowski, 1999; Gaztanaga and Lobo, 2001).
In this section, we want to demonstrate the dynamical property of the gravitational
scalar in the case of Brans–Dicke cosmology.

Before applying the Brans–Dicke theory to cosmology, we start by writing
the Robertson–Walker line element as

ds2 = −dt2 + a2(t)g̃ij dxi dxj , (1)

where i, j run from 1 to 3, a(t) is the scale of the non-compact three-dimensional
space with constant curvature K . The action of Brans–Dicke theory with non-
vanishing vacuum energy reads

I = 1

16π

∫
d4x

√−g

(
φR + ωgµν ∇µφ∇νφ

φ

)
+

∫
d4x

√
−g4(Lmatter − �),

(2)

where R is the space-time curvature scalar, φ is an auxiliary gravitational scalar
field, ω is a parameter of Brans–Dicke theory, and the vacuum energy density
from spontaneous symmetry breaking in quantum field theory is denoted by �.
Here, � > 0. Then the corresponding field equations are

Rµν − 1

2
gµνR = −8π

φ
Tµν − 1

φ
(gµνφ

;α
;α − φ;µ;ν) − ω

φ2
φ;µφ;ν

+ 1

2

ω

φ2
gµν∇σφ∇σ φ − 8π

φ
�gµν, (3)

and the field equation for φ reads

�
2φ = φ;µ

;µ = 8π

−3 + 2ω
(Tmatter + 4�). (4)

The matter stress–energy–momentum tensor may be written as Tµν = (ρm +
pm)uµuν + pmgµν , and then the classically conserved perfect fluid energy mo-
mentum tensor is

∂ρm

∂t
= −3

ȧ

a
(ρm + pm). (5)
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After a straightforward calculation using Equation (1), we also obtain the
non-zero components of the Ricci tensor

3+1R00 = −3
ä

a
; (6)

3+1Rij =
(

ä

a
+ 2

ȧ2

a2
+ 2

K

a2

)
gij ; (7)

Therefore, the fundamental equations of Brans–Dicke cosmology are

1 + K

ȧ2
= 8π

3H 2

[
ρ

φ
− ω

16π

φ̇2

φ2
−

(
3H

8π

φ̇

φ

)
+ �

φ

]
; (8)

ä

a
= −4π

3

[
(−6 + 2ω)ρ + 6ωp

φ(−3 + 2ω)
− 4

(
ω

16π

φ̇2

φ2

)

− 2

(
3H

8π

φ̇

φ

)
+ −6 − 4ω

−3 + 2ω

(
�

φ

)]
. (9)

As was discussed earlier, if we here assume that the vacuum energy plays the
role of dark energy in the present universe, therefore

�vacuum = 8π

3H 2

(
�

φ

)
, (10)

which is no longer a constant for a fixed Hubble parameter H . There would be
an obvious depression in �vacuum if the scalar field φ of Brans–Dicke theory rolls
to a large number. In addition, the dynamical equations of φ can be derived from
Equation (4), and are

φ̈

φ
= − 8π (ρ − 3p)

φ(−3 + 2ω)
+ 8π

(
−3H

8π

φ̇

φ

)
− 32π

−3 + 2ω

(
�

φ

)
. (11)

As a remarkable character, it is urgently necessary to note that the Equation (11)
contains almost all of cosmological density components demonstrated by
Friedman’s Equations (8) and (9).

3. SCALAR GRAVITY AND HIGGS MECHANISM

As a generalization of Brans–Dicke theory, we propose a new theory of
gravity with a complex scalar field ϕ which is coupled to the curvature scalar. It is
natural to construct the action as

I = 1

16π

∫
d4x

√−g[κϕϕ∗R(t, x) + ωgµνDµϕ(Dνϕ)∗ − λ(ϕϕ∗)2]

+
∫

d4x
√−gLmatter. (12)



Scalar Gravity and Higgs Mechanism 1535

Here the coupling constants κ , ω and λ are all dimensionless, so it is consistent
with the requirement of renormalizability. In addition, we also restrict them to be
positive in our model.

In principle, the curvature scalar can always be decomposed into

R(t, x) = R̄(t) + R̃(t, x), (13)

here R̄(t) can be regarded as the average value of the scalar curvature: R̄(t) =
〈R(t, x)〉 and R̃(t, x) is the local perturbation induced by the actual matter dis-
tributing. In addition, it is natural to be assumed that in cosmology the homoge-
neous isotropic component R̄(t) would dominate in the dynamical equation of the
universe. As far as the RW metric is concerned, this component can be written as

R̄(t) = 6
ä

a
+ 6

ȧ2

a2
+ 6

K

a2
. (14)

It is clear that the sign of the cosmological curvature scalar R̄(t) could change
with the evolution of our universe theoretically. On the other hand, the potential
of complex scalar ϕ in our case can be written as

V (ϕ) = −κR(t, x)ϕϕ∗ + λ(ϕϕ∗)2. (15)

The definition of physical vacuum may still require the space homogeneous and
isotropic. Therefore, the actual vacuum should be considered according to the
following formula: 〈V 〉(ϕ) = −κR̄(t)ϕϕ∗ + λ(ϕϕ∗)2. When R̄(t) evolves into a
positive quantity, there exist non-trivial minimums. The value of these minimums
are distributed on the circle

|ϕ| =
√

κR̄(t)

2λ
:= v√

2
. (16)

Hence, the gauge symmetry breaks spontaneously. For convenience, we only
consider the U (1) gauge symmetry in this Letter. The Higgs mechanism requires
the special gauge transformation

ϕ(x) −→ ϕ′(x) = η(x) + v√
2

; (17)

Aµ −→ Bµ = Aµ + 1

e
∇µξ (x); (18)

Dµ = ∇µ + ieAµ −→ D′
µ = ∇µ + ieBµ. (19)

After this transformation the Equation (12) becomes,

I = 1

16π

∫
d4x

√−g


κ


η +

√
κR̄(t)

2λ




2

R̃(t, x) + ω∇µ


η +

√
κR̄(t)

2λ



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×∇µ


η +

√
κR̄(t)

2λ


 + η2κR̄(t) − 3η2κR̄(t) − 2

√
2κR̄(t)λη3 − λη4

+ωe2BµBµ


η +

√
2κR̄(t)

λ


 η + ω

κR̄(t)

2λ
e2BµBµ + κ2R̄2(t)

4λ




+
∫

d4x
√−g[L̄matter(t) + L̃matter(t, x)]. (20)

In our framework, the running of the vacuum energy density with the evolu-
tion of the universe is realized. We have

� = 1

16π

κ2R̄2(t)

4λ
. (21)

Here the Higgs field is a real gravitational scalar η, which is generated by a
spontaneous symmetry breaking of the complex field ϕ. Therefore, the dynamical

mass of the Higgs field is mη =
√

2κR̄(t)
ω

and the dynamical equation for the Higgs
field is

�
2


η +

√
κR̄(t)

2λ


 = 1

2ω


 − 4κR̄(t)η − 6

√
2κR̄(t)λη2 − 4λη3 + 2ωe2BµBµη

+ωe2BµBµ

√
2κR̄(t)

λ


 + κ

ω


η +

√
κR̄(t)

2λ


 R̃(t, x).

(22)

We can imitate the discussion in Brans–Dicke theory and make a rough estimate

of the average of η +
√

κR̄(t)
2λ

by computing the central potential of a gas sphere

with the cosmic mass density ρ̄ ∼ 10−29g cm−3 and radius equal to the apparent
radius of the universe r ∼ 1028 cm, this gives an average value

〈
η +

√
κR̄(t)

2λ

〉
∼ −4κ

2ω


η +

√
κR̄(t)

2λ


 R̄(t)r2

= −2

ω

(
η +

√
κR̄(t)

2λ

)κ


η +

√
κR̄(t)

2λ




2

R̄(t)r2
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∼ −2

ω

(
η +

√
κR̄(t)

2λ

)16πρ̄r2


 −2

ω

〈
η +

√
κR̄(t)

2λ

〉16π × 1027g cm−1. (23)

Note that the constant 1/G = 1.35 × 1028g cm−1; hence, we normalize η +√
κR̄(t)

2λ
so that

ω

〈
η +

√
κR̄(t)

2λ

〉2


 1

G
. (24)

It is clear that the constant κ is still possible to be maintained in the magnitude
order of O(1) in its post Newtonian formalism.

In fact, It is not only the gauge boson obtains mass (see Equation (20) for
this boson mass). If it is assumed that the coupling between fermions and this
gravitational scalar ϕ exists, the fermions can also obtain mass in this picture.
Here we consider the simple Higgs-lepton coupling

Ge

[
eRϕ+

(
νe

e

)
L

+ (νe e)LϕeR

]
. (25)

After the gauge symmetry breaks, the electron obtains mass

me = Ge

√
κR̄(t)

2λ
. (26)

Therefore, the mass of fundamental particles in this scenario depend on the cosmo-
logical curvature scalar at spontaneous symmetry breaking, and are not uniquely
fixed quantities any longer. However, as we discussed earlier, whether the gauge
symmetry breaks or not is determined by the sign of the curvature scalar, and is
also determined by the evolving energy scale of the universe. Hence, fundamental
particles could not be distributed homogeneously on all physical energy scales
in the present time. In addition, experiments have also shown that the mass of
fundamental particles are stable at the present time. We think mass stability may
be obtained by considering the average value of the cosmological scalar curvature
R(t, x), just in a similar way to which Newton’s constant G can be related to the
average value of the scalar field φ in Brans–Dicke theory.
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According to Equation (26), it can also be investigated that the running speed
of the electron mass in our case is given by

ṁe = Ge
1

2




√
κR̄(t)

2λ




−1

κ ˙̄R(t)

2λ
. (27)

We recall the expression (14) of the curvature scalar in the homogeneous isotropic
universe, and further regard that ȧ2/a2 is still in the same magnitude order with
ä/a in the present scenario, it is natural to be extrapolated that R̄(t) ∼ O(H 2) and
˙̄R(t) ∼ O(H 3). Hence, we can also estimate the observational effect of a variable
electron mass in the present time,

�me/me

�t

 ṁe

me
= 1

2

˙̄R(t)

R̄(t)
∼ O(H ) ∼ 10−17 s−1. (28)

On the basis of the cosmological principle, the distribution of the ordinary
matter is assumed to be homogeneous isotropic. Then the motion of the ordinary
matter on the cosmological scale is also homogeneous isotropic. Therefore, on the
cosmological scale, the gravity theory may approximately have the formula of

Icos = 1

16π

∫
d4x

√−g


ω∇µ


η +

√
κR̄(t)

2λ


 ∇µ


η +

√
κR̄(t)

2λ


 + η2κR̄(t)

− 3η2κR̄(t) − 2
√

2κR̄(t)λη3 − λη4 + ωe2BµBµ


η +

√
2κR̄(t)

λ


 η

+ω
κR̄(t)

2λ
e2BµBµ + κ2R̄2(t)

4λ


 +

∫
d4x

√−gL̄matter(t). (29)

The motion of cosmological scale can be ignored in present tests of a gravity
theory in the solar system. Hence, in contrary to the cosmology on the large
scale, the gravity theory on the solar scale as a local perturbation formula may be
approximately taken as

Isol = 1

16π

∫
d4x

√−gκ


η +

√
κR̄(t)

2λ




2

R̃(t, x) +
∫

d4x
√−gL̃matter(t, x).

(30)
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4. CONCLUSION REMARKS

In this Letter, we have proposed a new form of scalar gravity theory, in which
the gravitational complex scalar naturally provides a candidate Higgs field for
Higgs mechanism. To demonstrate the dynamical property of such a gravitational
scalar in cosmology. We have also investigated the fundamental equations of
Brans–Dicke cosmology as an analog. In our scenario, the vacuum energy density
is required to be running with the evolution of the universe, which may release
the particle standard model from the rigorous cosmological constant problem in
some sense. Besides, a present testing-survivable running of the mass scale of
fundamental particles is also realized in our model and may shed light on the
hierarchy problem. As far as the spirit of this letter is concerned, there are two
outcomes may deserve to be emphasized in this conclusion. One of the key ideas
is that if a spontaneous symmetry breaking of the coupling between the curvature
scalar and a gravitational scalar field occurs on the cosmological scale, some
additional geometrical terms can be naturally introduced into the field equations.
Secondly, we have argued that a gravitational scalar is also qualified to be a
candidate for the Higgs field. Our present model is however still simplistic and
will be clarified further in our forthcoming papers.
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